Copied to
clipboard

G = C2×C42.12C4order 128 = 27

Direct product of C2 and C42.12C4

direct product, p-group, metabelian, nilpotent (class 2), monomial

Aliases: C2×C42.12C4, C42.675C23, C422(C4⋊C8), C4⋊C893C22, (C4×C8)⋊67C22, (C22×C4)⋊10C8, C2.3(C23×C8), (C23×C4).41C4, C4.30(C22×C8), (C2×C42).55C4, C23.40(C2×C8), C422(C22⋊C8), C42.300(C2×C4), (C2×C8).472C23, C24.128(C2×C4), (C2×C4).636C24, (C2×C4).94M4(2), C4.70(C2×M4(2)), C4(C42.12C4), C22.39(C23×C4), (C22×C42).32C2, C22.14(C22×C8), C2.5(C22×M4(2)), C4.80(C42⋊C2), C22⋊C8.243C22, (C23×C4).657C22, (C22×C8).506C22, C23.223(C22×C4), C22.62(C2×M4(2)), C42(C42.12C4), (C22×C4).1270C23, (C2×C42).1104C22, C22.69(C42⋊C2), C42(C2×C4⋊C8), (C2×C4×C8)⋊15C2, C4⋊C8(C2×C42), (C2×C4⋊C8)⋊54C2, (C2×C4)3(C4⋊C8), (C2×C4)⋊12(C2×C8), C422(C2×C4⋊C8), C42(C2×C22⋊C8), C22⋊C8(C2×C42), (C2×C4)3(C22⋊C8), C4.287(C2×C4○D4), C422(C2×C22⋊C8), (C2×C22⋊C8).50C2, C2.5(C2×C42⋊C2), (C2×C4).952(C4○D4), (C22×C4).458(C2×C4), (C2×C4).626(C22×C4), (C2×C4)(C42.12C4), (C2×C4)2(C2×C4⋊C8), (C2×C42)(C2×C4⋊C8), SmallGroup(128,1649)

Series: Derived Chief Lower central Upper central Jennings

C1C2 — C2×C42.12C4
C1C2C4C2×C4C22×C4C2×C42C22×C42 — C2×C42.12C4
C1C2 — C2×C42.12C4
C1C2×C42 — C2×C42.12C4
C1C2C2C2×C4 — C2×C42.12C4

Generators and relations for C2×C42.12C4
 G = < a,b,c,d | a2=b4=c4=1, d4=b2, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1c2, cd=dc >

Subgroups: 332 in 264 conjugacy classes, 196 normal (24 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C23, C23, C42, C2×C8, C2×C8, C22×C4, C22×C4, C22×C4, C24, C4×C8, C22⋊C8, C4⋊C8, C2×C42, C2×C42, C22×C8, C23×C4, C2×C4×C8, C2×C22⋊C8, C2×C4⋊C8, C42.12C4, C22×C42, C2×C42.12C4
Quotients: C1, C2, C4, C22, C8, C2×C4, C23, C2×C8, M4(2), C22×C4, C4○D4, C24, C42⋊C2, C22×C8, C2×M4(2), C23×C4, C2×C4○D4, C42.12C4, C2×C42⋊C2, C23×C8, C22×M4(2), C2×C42.12C4

Smallest permutation representation of C2×C42.12C4
On 64 points
Generators in S64
(1 51)(2 52)(3 53)(4 54)(5 55)(6 56)(7 49)(8 50)(9 42)(10 43)(11 44)(12 45)(13 46)(14 47)(15 48)(16 41)(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)(23 31)(24 32)(33 59)(34 60)(35 61)(36 62)(37 63)(38 64)(39 57)(40 58)
(1 3 5 7)(2 18 6 22)(4 20 8 24)(9 60 13 64)(10 12 14 16)(11 62 15 58)(17 19 21 23)(25 27 29 31)(26 56 30 52)(28 50 32 54)(33 35 37 39)(34 46 38 42)(36 48 40 44)(41 43 45 47)(49 51 53 55)(57 59 61 63)
(1 57 19 12)(2 58 20 13)(3 59 21 14)(4 60 22 15)(5 61 23 16)(6 62 24 9)(7 63 17 10)(8 64 18 11)(25 43 49 37)(26 44 50 38)(27 45 51 39)(28 46 52 40)(29 47 53 33)(30 48 54 34)(31 41 55 35)(32 42 56 36)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)

G:=sub<Sym(64)| (1,51)(2,52)(3,53)(4,54)(5,55)(6,56)(7,49)(8,50)(9,42)(10,43)(11,44)(12,45)(13,46)(14,47)(15,48)(16,41)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,59)(34,60)(35,61)(36,62)(37,63)(38,64)(39,57)(40,58), (1,3,5,7)(2,18,6,22)(4,20,8,24)(9,60,13,64)(10,12,14,16)(11,62,15,58)(17,19,21,23)(25,27,29,31)(26,56,30,52)(28,50,32,54)(33,35,37,39)(34,46,38,42)(36,48,40,44)(41,43,45,47)(49,51,53,55)(57,59,61,63), (1,57,19,12)(2,58,20,13)(3,59,21,14)(4,60,22,15)(5,61,23,16)(6,62,24,9)(7,63,17,10)(8,64,18,11)(25,43,49,37)(26,44,50,38)(27,45,51,39)(28,46,52,40)(29,47,53,33)(30,48,54,34)(31,41,55,35)(32,42,56,36), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)>;

G:=Group( (1,51)(2,52)(3,53)(4,54)(5,55)(6,56)(7,49)(8,50)(9,42)(10,43)(11,44)(12,45)(13,46)(14,47)(15,48)(16,41)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,59)(34,60)(35,61)(36,62)(37,63)(38,64)(39,57)(40,58), (1,3,5,7)(2,18,6,22)(4,20,8,24)(9,60,13,64)(10,12,14,16)(11,62,15,58)(17,19,21,23)(25,27,29,31)(26,56,30,52)(28,50,32,54)(33,35,37,39)(34,46,38,42)(36,48,40,44)(41,43,45,47)(49,51,53,55)(57,59,61,63), (1,57,19,12)(2,58,20,13)(3,59,21,14)(4,60,22,15)(5,61,23,16)(6,62,24,9)(7,63,17,10)(8,64,18,11)(25,43,49,37)(26,44,50,38)(27,45,51,39)(28,46,52,40)(29,47,53,33)(30,48,54,34)(31,41,55,35)(32,42,56,36), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64) );

G=PermutationGroup([[(1,51),(2,52),(3,53),(4,54),(5,55),(6,56),(7,49),(8,50),(9,42),(10,43),(11,44),(12,45),(13,46),(14,47),(15,48),(16,41),(17,25),(18,26),(19,27),(20,28),(21,29),(22,30),(23,31),(24,32),(33,59),(34,60),(35,61),(36,62),(37,63),(38,64),(39,57),(40,58)], [(1,3,5,7),(2,18,6,22),(4,20,8,24),(9,60,13,64),(10,12,14,16),(11,62,15,58),(17,19,21,23),(25,27,29,31),(26,56,30,52),(28,50,32,54),(33,35,37,39),(34,46,38,42),(36,48,40,44),(41,43,45,47),(49,51,53,55),(57,59,61,63)], [(1,57,19,12),(2,58,20,13),(3,59,21,14),(4,60,22,15),(5,61,23,16),(6,62,24,9),(7,63,17,10),(8,64,18,11),(25,43,49,37),(26,44,50,38),(27,45,51,39),(28,46,52,40),(29,47,53,33),(30,48,54,34),(31,41,55,35),(32,42,56,36)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)]])

80 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4X4Y···4AJ8A···8AF
order12···222224···44···48···8
size11···122221···12···22···2

80 irreducible representations

dim11111111122
type++++++
imageC1C2C2C2C2C2C4C4C8M4(2)C4○D4
kernelC2×C42.12C4C2×C4×C8C2×C22⋊C8C2×C4⋊C8C42.12C4C22×C42C2×C42C23×C4C22×C4C2×C4C2×C4
# reps1222811243288

Matrix representation of C2×C42.12C4 in GL4(𝔽17) generated by

16000
01600
0010
0001
,
4000
01600
00160
0001
,
13000
01600
00130
00013
,
8000
01600
00016
0010
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,1,0,0,0,0,1],[4,0,0,0,0,16,0,0,0,0,16,0,0,0,0,1],[13,0,0,0,0,16,0,0,0,0,13,0,0,0,0,13],[8,0,0,0,0,16,0,0,0,0,0,1,0,0,16,0] >;

C2×C42.12C4 in GAP, Magma, Sage, TeX

C_2\times C_4^2._{12}C_4
% in TeX

G:=Group("C2xC4^2.12C4");
// GroupNames label

G:=SmallGroup(128,1649);
// by ID

G=gap.SmallGroup(128,1649);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,100,124]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^4=1,d^4=b^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1*c^2,c*d=d*c>;
// generators/relations

׿
×
𝔽